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DESTABILIZATION AND CHARACTERIZATION OF LIBH4/MGH2 
COMPLEX HYDRIDE FOR HYDROGEN STORAGE 

 
Luis A. Rivera 

 
ABSTRACT 

 
 The demands on Hydrogen fuel based technologies is ever increasing for 

substitution or replacing fossil fuel due to superior energy sustainability, national security 

and reduced greenhouse gas emissions.  Currently, the polymer based proton exchange 

membrane fuel cell (PEMFC), is strongly considered for on-board hydrogen storage 

vehicles due to low temperature operation, efficiency and low environmental impact.  

However, the realization of PEMFC vehicles must overcome the portable hydrogen 

storage barrier.  DOE and FreedomCAR technical hydrogen storage targets for the case 

of solid state hydrides are: (1) volumetric hydrogen density > 0.045 kgH2/L, (2) 

gravimetric hydrogen density > 6.0 wt%, (3) operating temperature < 150oC, (4) life-

times of 1000 cycles, and (5) a fast rate of H2 absorption and desorption.   

 To meet these targets, we have focused on lithium borohydride systems; an alkali 

metal complex hydride with a high theoretical hydrogen capacity of 18 wt.%.  It has been 

shown by Vajo et al. that adding MgH2, improves the cycling capacity of LiBH4.  The 

pressure-composition-isotherms of the destabilized LiBH4 + MgH2 system show an 

extended plateau pressure around 4-5 bars at 350°C with a good cyclic stability.  The 

mentioned destabilizing mechanism was successfully utilized to synthesize the complex
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hydride mixture LiBH4 + ½MgH2 + Xmol% ZnCl2 catalyst (X=2, 4, 6, 8 and 10) by ball 

milling process. The added ZnCl2 exhibited some mild catalytic activity which resulted in 

a decomposition temperature reduction to 270°C.  X-ray powder diffraction profiles 

exhibit LiCl peaks whose intensity increases proportionately with increasing ZnCl2 

indicating an interaction between catalyst and hydride system, possibly affecting the total 

weight percent of desorbed hydrogen.  Thermal gravimetric analysis profiles for MgH2 + 

5mol% nanoNi and LiBH4 + ZnCl2 + 3mol% nanoNi indicate that small concentrations of 

nano-nickel acts as an effective catalyst that reduces the mixture desorption temperature 

to around 225oC and 88oC, respectively.  Future work will be focused on thermodynamic 

equilibrium studies (PCT) on the destabilized complex hydrides. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Current Energy “Situation” 

Our current energy “situation” has been the main motivator to pursue research in 

metal hydrides for on-board hydrogen storage.  This “situation” has been created by 

several factors threatening to destabilize our economy, environment and national energy 

security if not solved or at least tackled “on time”.  A possible key factor is closely 

related to our oil dependency and its influence.  However, there are multiple solutions 

that could reduce our oil dependency while at the same time re-stabilizing the economy, 

improving the environment and strengthening our national energy security.  This section 

will briefly discuss how our oil dependency plays its role and possible alternatives.  

 

 1.1.1 Oil Market  

 Note from the author: “Most of the data presented in this section 1.1.1 Oil Market 

was taken from the Energy Information Administration (EIA) which is the Official 

Energy Statistics from the United States government”.   

For decades the world, mostly the United States, enjoyed the access to relatively 

inexpensive and abundant crude oil (fossil fuels) supply.  In 2005, the United States 

energy consumption reached the 99.9 quadrillion Btu and a petroleum consumption of 
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21 million barrels per day.  In addition, around 63% of the United States energy sources 

relied on fossil fuels to cover its demand in 2005 [1].  According to EIA data [2], for the 

third quarter of 2006, the United States oil demand (around 20.80 millions barrels per 

day) has surpassed its oil supply (approx. 8.48 millions barrels per day) reaching deficits 

levels higher than 2 times its supply.  If the United States decides to use its own reserves, 

which are about 21.4 billions barrels (refer to Table 1.1) to supply its current demand, the 

reservoirs would be depleted in approximately 3 years, a possible reason to cover the 

deficit with foreign oil imports. 

 Table 1.1:  World Oil Reserves by Country as of January 1, 2006 [3]. 

Country Oil Reserves  
(Billions Barrels) 

Saudi Arabia 264.3 
Canada 178.8 

Iran 132.5 
Iraq 115.0 

Kuwait 101.5 
UAE 97.8 

Venezuela 79.7 
Russia 60.0 
Libya 39.1 

Nigeria 35.9 
United States 21.4 

China 18.3 
Qatar 15.2 

Mexico 12.9 
Algeria 11.4 
Brazil 11.2 

Kazakhstan 9.0 
Norway 7.7 

Azerbaijan 7.0 
India 5.8 

Rest of World 68.1 
World Total 1292.5 
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 In a broader scope, a world supply of approximately 85.18 millions barrel per day 

barely suffices a total world consumption of approximately 84.22 millions barrel per day 

[2].  World reserves are estimated at 1292.5 billions barrels (refer to Figure1.1) [3], if 

considering constant world consumption the reserves life-span would be around 42 years. 

 

Figure 1.1:  World Oil Prices, 1980-2030.  Comparison of IRAC (Imported Refiner 
Acquisition Cost) and Average Price of Imported Low-Sulfur, Light Crude Oil (ILSLCO) 

to U.S. Refiners [6]. 
 

Estimated values for 2025, world oil consumption and total resources (the 

resources term counts: proved reserves, reserves growth and undiscovered reserves) were 

estimated at around 111 million barrels per day [4] and 2961.6 billion barrels [5], 

respectively.  If by 2025, the estimate is real with no other possible reserves and a 

constant consumption, the world oil resources would disappeared in approximately 73 

years close to the year 2100.    
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Additionally, according to a report from the EIA [6], world oil prices have been 

dramatically increasing since 1995 and are projected to stabilize by 2015 (refer to Figure 

1.1).  The increase in crude oil prices has increased U.S. retail gasoline prices which 

could reduce consumer purchase power and its accessibility (refer to Figure 1.2) [7]. 

 

Figure 1.2:  Price Comparison for a Gallon of Regular Grade Gasoline in 2004 and 2005 
[7]. 

 
Our dependency and the oil market have critically affected our national security 

and economy however, not limited to those mentioned.  The constant use of fossil fuels 

has also affected our environment locally and globally.  The combustion of fossil fuels 

produces carbon dioxide (CO2), a component directly linked to the greenhouse gases and 

global warming.  The next section will briefly discuss the history and effect of carbon 

dioxide.      
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 1.1.2 Global Warming and Greenhouse Effect  

 Scientists tried to explain the relationship between carbon dioxide effects of the 

global warming.  The first steps to measure carbon dioxide levels in the atmosphere were 

still speculated until in 1960, when Keeling discovered that carbon dioxide levels in the 

atmosphere were increasing [8], (refer to Figure 1.3).   

 

Figure 1.3:  “Keeling Curve” – CO2 Measurement at Mauna Loa, Hawaii [9]. 

However, the plot only indicates the increasing carbon dioxide levels in the 

atmosphere and not a direct relationship with temperature (greenhouse effect) and 

atmospheric carbon dioxide levels.  Close to 1985, scientists’ studying Antarctic ice cores 

found a direct relationship of temperature with concentration of carbon dioxide levels for 

past ice age cycles (see Figure 1.4) [10].    
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Figure 1.4:  CO2 Concentration in Parts Per Million Plotted Against Thousands of Years 
Before Present [11]. 

 
This finding demonstrated that carbon dioxide takes an important role in our 

global climate.  In addition, further investigations have found that carbon dioxide levels 

are increasing [12].  According to an EIA report, it has been projected that world carbon 

dioxide emissions increases from 21,223 million metric tons in 1990 to 43,676 million 

metric tons by 2030 [13].  The continuous and increased use of carbon base energy 

sources, in these case fossil fuels, could further catalyze the already affected global 

climate by the addition of more anthropogenic carbon dioxide.  Climate changes and 

limited oil availability threat to inflict worldwide damage with irreversible consequences 

if solutions of a significant magnitude are not implemented.  Several these solutions are 

non-carbon (fossil fuels) base power sources which are currently in use throughout the 

world, aiding the task reducing the use of fossil fuels however; these non-carbon base 

technologies also face limitations. 
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 1.1.3 The Alternative  

Current technological advances are providing the world with the solution to our 

oil dependency.  Technologies such as: nuclear energy, wind energy, hydropower and 

solar energy has been in use for several years in many countries to supply the demand for 

energy, while reducing oil consumption and carbon dioxide generation.  On the other 

hand, fully implementing these new technologies has proven to be a difficult task due to 

their intrinsic limitations [14], which would not be discussed in this report.  Recent global 

factors have motivated multiple countries, including the United States, to consider PEM 

(Proton Exchange Membranes) fuel cells (see Figure 1.5) as future source of energy, in 

the what would be called the hydrogen economy, due to their high efficiency, negligible 

air pollution and versatility [15, 16].  Despite the PEM positive qualities and the 

significant impact it will bring to the hydrogen economy, the hydrogen storage limitation 

must be solved in order to achieve the goal.  In this report it is focused on the analysis 

and characterization of complex light weight metal hydrides for on-board hydrogen 

storage.  The main objectives of the research are based on the technical targets set by the 

US Department of Energy (DOE).       
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Figure 1.5:  PEM Fuel Cell [17]. 

The following chapter will provide a general overview of metal hydrides and the 

complex metal hydrides investigated for this report.       
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CHAPTER 2 

INTRODUCTION TO COMPLEX METAL HYDRIDES 

 

2.1 General Overview 

In a simple definition, metal hydrides are metallic elements (one or more metal 

elements) bonded with hydrogen.  There are various types of metal hydrides which can 

be classified by the amount of different species present in the molecule: binary, ternary 

and quaternary hydrides (refer to Table 2.1).   

 

Table 2.1:  Classification of Metal Hydrides. 

Classification Example 
Binary [18] LiH, MgH2, etc. 
Ternary [18] LiBH4, Zn(BH4)2, etc. 
Quaternary LaMg2NiH7 [19], LiMg2RuH7 [20], etc. 

 

The general reaction for hydrogen desorption (reaction 1) and absorption (reaction 

2) for binary metal hydrides is as follows: 

)(22 gn HnMMH +→  (1) 

ng MHHnM →+ )(22
 (2) 
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Ternary and Quaternary metal hydrides follow complex reactions path which are 

specific for each compound.  Due to different molecular combination as seen in Table 

2.1, metal hydrides exhibit a wide array of characteristics and properties.   

Several of these materials are being investigated as possible candidates for on-

board hydrogen storage.  An idea on how the metal hydrides would be processed during 

the hydrogen economy is depicted in Figure 2.1 using sodium borohydride (NaBH4). 

 

Figure 2.1:  Hypothetical Hydrogen Economy Using NaBH4 as Hydrogen Storage [21]. 

There are key general requirements that the metal hydride candidate must meet 

before its selection [22]: 

(1) Favorable thermodynamics. 

(2) Fast release and absorbing of hydrogen. 

(3) High gravimetric and volumetric hydrogen capacities. 

(4) Negligible change in hydrogen absorption/desorption storing capacity. 

The DOE (Department of Energy) [23] and FreedomCAR Hydrogen Storage 

Team [24] developed specific technical targets to consider a prospective compound as a 

hydrogen storage system.  Partial data for the year 2015 is presented in Table 2.2. 
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Table 2.2:  DOE and FreedomCAR Hydrogen Storage Team Technical Targets [23, 24]. 

Technical Targets Year 2015 
Specific energy (MJ/kg) 10.8 

Gravimetric capacity (kg H2/kg system) 0.09 
Volumetric Capacity (kg H2/L system) 0.081 

Energy density (MJ/liter) 9.72 
System cost ($/kg system) 3 
Operating temperature (oC) -20/50 

Cycle life (cycles) 1500 
Delivery pressure (bar) 2.5 

Refueling rate (kg H2/min) 2.0 
 

Several metal hydrides and compounds satisfy some of the requirements on Table 

2.2, but still lack in others.  Investigations have been performed to store hydrogen in 

compressed tanks or as liquefied H2 [25], however application for on-board storage is 

limited due to low volumetric capacity and safety issues.  Recent work has been done 

with methane reforming as a method to produce hydrogen.  Unfortunately, this process is 

energy intensive [26].  Metal hydrides compounds located on the upper right hand side of 

the graph on Figure 2.2 are considered the best materials for hydrogen storage 

applications [27].  Sodium aluminum hydride shows promise of filling the hydrogen 

storage technical needs however, several investigations indicates a low hydrogen release 

at high temperatures and poor cyclic reversibility due to partial reactions [28 – 32].  For 

our research, doped and undoped mixtures of LiBH4 and MgH2 and additional ones 

(Zn(BH4)2 and dopants) were investigated.  The following sections will continue briefing 

about the background of the compounds and its different properties.   
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Figure 2.2:  Comparison of Volumetric and Gravimetric Hydrogen Capacities for Some 
Metal Hydrides [16]. 

 

2.2 Lithium Borohydride (LiBH4) 

LiBH4 is one of the light weights and high hydrogen storage capacity material.  It 

has a theoretical gravimetric and volumetric hydrogen storage capacities of 18.5 wt.% 

and 121 kgH2/m3, which surpasses the DOE and FreedomCAR targets (refer to Table 

2.2).  Initial investigations have demonstrated that the hydrolysis reaction (3) [33-35] of 

lithium borohydride at room temperatures effectively releases hydrogen exothermically; 

however the process is irreversible with LiBO2 as byproduct.  Hydrolysis reaction 

proceeds as follows: 

2224 42 HLiBOOHLiBH +→+  (3) 

 



www.manaraa.com

 

13 

An alternate route that has been previously investigated is to thermally destabilize 

LiBH4.  Lithium borohydride has a known melting point around 275oC [36] with the 

following thermal properties investigated by Fedneva et al. [37], refer to Table 2.3: 

Table 2.3:  Thermal Analysis of Lithium Borohydride According to Fedneva et al. [37]. 

Temperature Range (oC) Description 

108–112 Endothermic peak.  Structural transition. 

268–286 Fusion process with a slight weight loss. 

380 Main weight loss due to H2 decomposition. 

483–492 
Authors are not certain however, it coincides with a 

weight loss. 

 

 Recent thermal studies by Zuttel et al. [38, 39] and Orimo et al. [40] further 

expands the understanding regarding lithium borohydride behavior (see Table 2.4 and 

2.5). 

Table 2.4:  Thermal Studies by Zuttel et al. on Lithium Borohydride [38, 39]. 

Temperature Range (oC) Description 

100 Structural transition with a slight weight loss. 

270 Fusion phase. 

320 First significant weight loss. 

400–500 Second significant weight loss. 

 

Table 2.5:  Thermal Studies by Orimo et al. on Lithium Borohydride [40]. 

Temperature Range (K) Description 

380 (~107oC) Structural transition. 

550 (~277oC) Melting phase. 

600–700 (~327–427oC) Dehydriding reaction. 
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As an additional note, the structural transition of lithium borohydride has been 

found to be from orthorhombic [41] to hexagonal structure [42-44].    

According to Stasinevich and Egorenko [45], the decomposition of alkali metal 

tetrahydroborides can proceed as reactions (4) or (5): 

24 2HBMMBH ++→  (4) 

24 2
3 HBMHMBH ++→  (5) 

 

For lithium borohydride, the dehydriding reaction (6) [38] and rehydriding 

reaction (7) [40] can be generally described as: 

24 2
3 HBLiHLiBH ++→  (6) 

422
3 LiBHHBLiH →++  (7) 

 

Theoretically the reaction (6) releases around 13.8wt% of hydrogen.  According 

to Orimo et. al [40], the rehydrogenation of lithium borohydride was achieved however, 

the energy levels consumed during this process, 35Mpa of hydrogen and 873K, might not 

make it cost effective.  Additional investigations performed with lithium borohydride, 

included the doping with SiO2 as a catalyst thus enabling the decrease of LiBH4 

dehydriding temperature to 300oC [39].  A recent report indicates a dehydrogenation-

rehydrogenation cycle improvement and reducing the reaction enthalpy of LiBH4 by the 

addition of MgH2 in a ratio of 2LiBH4 + MgH2 [46].  The addition of MgH2 reversibly 

destabilizes LiBH4 which in consequence increases the hydrogen equilibrium pressure as 

reaction (8) [46]: 
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2224 2
2
1

2
1 HMgBLiHMgHLiBH ++↔+  (8) 

 

Part of the investigation was dedicated to further understand the behavior of 

2LiBH2 + MgH2.  The report will discuss the significant results obtained while studying 

the system.  The next section will briefly introduce the compound used during the 

research MgH2. 

 

2.3 Magnesium Hydride (MgH2) 

 Magnesium hydride is a non-expensive binary hydride with a theoretical 

hydrogen capacity around 7.6wt% [18].  It can effectively store hydrogen due to its 

thermodynamic stability however reaction kinetics are too slow and the decomposition 

temperature is high, approximately at 330oC [18].   

Different approaches to improve the reaction kinetics of MgH2 have been taken, 

including the mechanical milling.  The mechanical milling of a hydrogen absorbing 

compound, in this case MgH2, under hydrogen pressure leads to hydrogen uptake, defects 

and changes in the surface [47-50] however the attention is more focused on the effective 

reduction of the desorption temperature by ball milling [51-55].  Experiments have taken 

place in order to catalytically improve MgH2 kinetics with Nb2O5 [56, 57].  More studies 

involve the addition of small amounts of Ti, V, Mn, Fe, Ni mechanically milled with 

MgH2 reporting good results [58-62].  A recent approach is the use of magnesium nickel 

alloys for hydrogen storage systems [63-65], the presence of nickel improves the 

hydriding and dehydriding rates.  The MgH2/nanoNickel system was investigated and the 

results presented in this report discussing the effects of nanoNickel.  In addition, mixture 
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of the system with dopants was also compared with Vajo’s et al. [46] in this document 

and will be discussed in Chapter 4.  The next session will briefly introduce a studied 

compound Zn(BH4)2. 

  

2.4 Zinc Borohydride (Zn(BH4)2)  

 Zn(BH4)2 is a ternary complex metal borohydride with a decomposition 

temperature of around 85oC [18].  Its theoretical hydrogen capacity is about 8.5wt% and 

it can be synthesized by metathesis reaction of NaBH4 and ZnCl2 in diethyl ether [66].  A 

recent report from Eun Jeon et al. [67] indicates that zinc borohydride was successfully 

synthesized by ball milling zinc chloride and sodium borohydride without the use of a 

solvent, see reaction (9): 

NaClBHZnNaBHZnCl 2)(2 2442 +→+  (9) 

 

 For this report, the possible formation of Zn(BH4)2 by ball milling LiBH4 and 

ZnCl2 would be explained, however additional investigations are needed to determine its 

presence. 
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CHAPTER 3 

MATERIALS, EQUIPMENTS AND APPROACH 

 

3.1 Experimental Materials 

Table 3.1 provides a list of the materials used during the investigation.  These 

materials are used without further purification except drying inside the N2/vacuum glove 

box for O2 and moisture removal. 

 

Table 3.1:  List of Materials. 

Name of material Purity Manufacturer 

ZnCl2 99.999% Sigma-Aldrich 

TiCl3 99.999% Sigma-Aldrich 

LiBH4 95% Alfa Aesar 

TiF3 99.999% Sigma-Aldrich 

nanoNi 99.99% QuantumSphere 

nanoNi 99.9% Sigma-Aldrich 

nanoZn 99+% Sigma-Aldrich 

MgH2 98% Alfa Aesar 

Polyethylene foil (thin foil) unknown Target Brands, Inc. 
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3.2 General Approach 

 The general procedure followed for the investigation is represented in Figure 3.1. 

 

Figure 3.1:  Procedure Followed During the Investigation. 

 The approach specified in Figure 3.1 would have a general formula to distinguish 

if the mixture has not been altered with additional components.  The formulas would be 

shown in the plot legend as follows: 

timeBMCBA +++  (10) 

timeBMCBA ++  (11) 

 

Determine mixture 
ratio of components 

Mix components 
inside N2 Glove Box 

Ball Milling Process 

N2 Glove Box 

Additional 
components? 

Yes

No

Characterization 
techniques 
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Formulas (10) and (11) indicates that components A, B and C were first mixed 

together and then ball milled (BM in the formula is an abbreviation for ball milling) for a 

certain amount of time.  However, if an additional component was added to the mixture 

and then ball milled again.  The formulas would be presented in the plot legend as 

follows:   

timeBMDtimeBMCBA +++++ )(  (12) 

timeBMDtimeBMCBA ++++ )(  (13) 

 

Formulas (12) and (13) indicates that components A, B and C were first mixed 

together and then ball milled (BM in the formula is an abbreviation for ball milling) for a 

certain amount of time, however an additional component D was added afterwards and 

then ball milled again.  As an example, if the plot legend states: MgH2 BM9hrs + 

10mol% nanoZn + BM2hrs.  It indicates that MgH2 was previously ball milled for 9 

hours then mixed with 10 mol% of nano-Zinc and the new mixture ball milled for 2 

hours.  This method would enable the readers to understand the legend on each plot still, 

to avoid confusion, a full explanation as detailed before will be provided. 

 

3.3 General Procedure 

All mixing, transfer and weighing was carried out in a nitrogen filled glove box to 

reduce the contact of oxygen and moisture with the samples.  The mixtures were 

mechanically milled in a high energy Fritsch pulverisette planetary mono mill P6 using a 

stainless steel bowl (80 ml and 250ml) sealed with a specially designed lid with two 

Schrader valves on opposite corners and a viton O-ring (refer to Figure 3.2). 
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Figure 3.2:  Ball Milling Bowl and the Specially Designed Lid with Schrader Valves. 

A ball to powder weight ratio of 20:1 and a milling speed of 300 rpm were set to 

optimize the process over a varied range of milling times. Several milling durations were 

employed during the investigation ranging from 20 minutes to 2 hours.  The ball milling 

time and procedure will be further discussed in details for each result in Chapter 4.  

Hydrogen flushing/purging was performed prior ball milling to every mixture in order to 

reduce the presence of oxygen and/or moisture inside the bowl during the process.  For 

ball milling times below 30 minutes the system was purged only once at the beginning, 

before starting the process however; for milling times higher than 30 minutes (i.e. 1 hour) 

the purging was performed every 30 minutes.  After ball milling, the as-prepared mixture 

of complex hydrides were immediately transferred to the glove box for further 

characterization analysis. 

Weight loss analyses were performed using a SDT-Q600 instrument from TA 

Instruments.  For SDT-Q600 measurements the samples were loaded in alumina pans and 

set the general temperature ramp rate at around 5oC/min.  All calibrations were performed 
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as per TA instruction manual.  The Universal Analysis software V4.0C was employed to 

analyze the results obtained from both equipments.  An additional note, the to-be-

measure samples were handled inside the nitrogen filled glove box at all times except 

when purging with hydrogen. 

The measurement for isothermal volumetric sorption was carried out by a Hy-

Energy’s PCT Sievert’s type apparatus.  Volume calibration was performed with and 

without the sample until a constant temperature with accuracy of ±1° C was achieved.  A 

Lab View software program was employed for data monitoring and recording.  The 

measurement analyses were performed using Hy-Analysis macros in the Igor program. 

  The powder X-ray diffraction (XRD) analyses were carried out using a Philips 

X’pert diffractometer with CuKα radiation of λ= 5.4060 Ǻ.  As part of the Incident Beam 

Optics, a Fixed Divergence slit module was used along with a 1o Fixed slit, a 10mm 

Beam mask and Soller slit of 0.04 rad.  The accessories used for the Diffracted Beam 

Optics were: a Programmable Receiving Slit with fixed anti scatter slit, a 2o anti scatter 

slit, a monochromator and detector.  The collected XRD patterns were analyzed 

employing the software PANalytical X’pert Highscore software version 1.0e for phase 

identification and crystalline size.  A polyethylene clear plastic wrap (thin foil) was used 

to protect the samples from air and moisture by wrapping the sample holder completely 

with the thin foil (see Figure 3.3).  The thin foil shows diffraction peaks in the 2θ range 

of 21–28º. 
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Figure 3.3:  XRD Sample Holder Covered with Polyethylene Clear Plastic Wrap. 

The Perkin-Elmer one FT-IR spectrometer was used in order to study the B-H 

bonds or other possible chemical bonds in the 2LiBH4 / MgH2 mixtures, which would be 

discussed in Section 4.3.  

 

3.4 Equipments 

3.4.1 Nitrogen Filled Glove Box 

As a general definition, the glove box is a sealed container designed to maintain 

special atmospheric conditions while also allowing the investigator to manipulate the 

objects or objects placed inside of it.  The principal components of the glove box are 

(refer to Figure 3.4 and 3.5): 
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Figure 3.4: TA Instruments Diagram of Glove Box [68]. 

(1) Gloves. 

(2) Vacuum pump. 

(3) Electronic sensors to monitor oxygen and moisture content. 

(4) Two antechambers or ports used to transfer materials in and out of the glove box; 

both ports can be opened from the inside and outside the box. 

(5) The automatic gauge controls maintains the pressure inside the glove box, the system 

will increase or reduce pressure by injecting nitrogen or evacuating with vacuum 

pump, respectively according to the pressure range set for operation. 

(6) The foot pedal, it allows the investigator to manually adjust the pressure inside the 

glove box. 

(7) The purification system removes and maintains low levels (less than 1ppm) of oxygen 

and moisture inside the gloves by continuously reprocessing (refer to Figure 3.6) the 

nitrogen through a molecular sieve of (Al2O3) alumina and copper catalyst. 
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Figure 3.5:  Picture of Glove Box. 

 

 

Figure 3.6:  Glove Box System Flow Diagram [69]. 
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3.4.2 Ball Mill (BM) 

A high energy Fritsch pulverisette planetary mono mill P6 (see Figure 3.7) was 

used for mixing and synthesis of complex metal hydrides.   

 

Figure 3.7:  Picture of Ball Mill Equipment [70]. 

Other processes can be achieved using the ball milling such as: particle size 

reduction and structural alterations of particles.  The ball milling operation is as follows: 

the bowl is placed on the grinding platform (note: the platform has a counter weight to 

minimize vibrations due to imbalances), secured to the platform with the safety features 

and programmed to rotate either clockwise or counter clockwise.  The grinding bowl’s 

rotational movement is opposite of the supporting disk movement (refer to Figure 3.8).  

The centrifugal force (up to 10 g’s acceleration) provides energy and motion to the 

grinding balls which are rolled halfway around the bowl and then, due to centrifugal 

force, thrown across the bowl to impact the sample on the opposite side at high speed. 
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Figure 3.8:  Cross-Sectional Diagram of the Planetary Ball Mill Movement [71]. 

 

3.4.3 Simultaneous DSC and TGA – (SDT) 

The SDT measures heat flow (enthalpic changes) and weight changes related with 

transitions and reactions in materials.  The equipment has the capability to assist in the 

differentiation of endothermic and exothermic processes with no weight loss (e.g., 

melting and crystallization) from those with weight changes (e.g., desorption).  The 

operational temperature range for the model (SDT-Q600) ranges over the ambient to 

1500oC.  The furnace is a one piece alumina sample tube surrounded by a platinum 

rhodium heater (refer to Figure 3.9) which can be set with heating rates of up to 

100oC/min and 25oC/min for final temperatures of 1000oC and 1500oC, respectively.  The 

balance beams are made of ceramic alumina with platinum liners platform at the furnace 

end.  Platinum/Platinum-Rhodium thermocouples inside the ceramic beams from the 

platform to the meter mount provide the thermal measurements (refer to Figure 3.10).  To 

prevent back-diffusion from the samples and contamination to the balance housing, the 

area is carefully purged with inert gas (in this case N2) (refer to Figure 3.11).  The SDT-
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Q600 was enclosed inside a glove box to reduce samples exposure to air (refer to Figures 

3.12 and 3.13). 

 

Figure 3.9:  Cross-Sectional Diagram of SDT Furnace [72]. 

 

 

Figure 3.10:  SDT Balance Housing [72]. 
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Figure 3.11:  Full Cross-Sectional Diagram of SDT-Q600 [73]. 

The TGA portion of the instrument operates as follows; the balance arms (ceramic 

beams) are maintained in a horizontal null position while a position sensor sends an equal 

amount of light (supplied by a constant current infrared LED) to each of the photodiodes.  

If weight is lost or gained, the beam positions shifts causing an unequal amount of light 

to strike the photodiodes.  The unequal amount of light is then transferred as a change in 

current which is proportional to the weight change.  

The DSC portion employs a single heat source (Platinum Rhodium heater) and 

two symmetrically located and identical sample platforms (ceramic beams) with 

thermocouples inside and along the beams length.  The platforms symmetry is necessary 

in order to uniformly apply heat.  The analysis works converting the heat flow to the 

thermal equivalent of Ohm’s Law. 
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Figure 3.12:  SDT-Q600 Photo. 

 

 

Figure 3.13:  SDT-Q600 Inside an Inert Atmosphere Glove Box. 
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3.4.4 X-Ray Diffractometer (XRD) 

X-ray Powder Diffraction (XRD) is a technique which employs collimated 

monochromatic x-rays for characterization and identification of crystalline structure.  

Additional uses include: qualitative and quantitative phase identification, identification of 

lattice parameters, thin film studies, etc.  A Philips X’pert diffractometer with CuKα 

radiation of λ= 5.4060 Ǻ, was employed for such purposes during the investigation.  The 

cathode emits and accelerates the electrons into the vacuum by high voltage while the 

anode collects them establishing a current flow.  The electrons impact the metal target (in 

this case copper) and produce X-rays, which are incident on the sample.  The diffraction 

takes place when X-rays are diffracted by their interaction with the atomic plane 

arrangement in the crystal.   

The basic principle of Bragg-Brentano geometry was used for the powder 

diffraction.  According to Bragg’s Law, when X-rays are scattered from a crystal lattice 

constructively, not destructively (refer to Figure 3.14 and 3.15), peaks of scattered 

intensity are observed that satisfies the Bragg equation (13) given below: 

)sin(2 θλ dn =  (13) 

 

Where θ is the angular position between the incident and diffracted rays, d is the 

spacing between the planes of atoms lattice, n is an integer, λ is the wavelength of x-rays.  

A picture of the XRD equipment used as a characterization tool is provided in Figure 

3.16. 
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Figure 3.14:  Constructive (Left Picture) or Destructive (Right Picture) Interferences [74]. 

 

 

 

Figure 3.15:  Schematic of an X-ray Diffractometer [75]. 
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Figure 3.16:  X’pert Diffractometer Picture. 

 

3.4.5 Pressure Composition Isotherms (PCI) Apparatus  

The PCI or PCT is an automated Sieverts type apparatus use to measure gas 

sorption properties of materials, in this case hydrogen sorption in metal hydrides.  The 

model use during the investigation was the PCTPro-2000 by Hy-Energy LLC., USA.  

The model offers several features for measurements such as: PCI (Pressure Composition 

Isotherms), Gas Sorption Kinetics, Heat of Formation, Cycle-Life Kinetics, Cycle-Life 

PCT, Volume Calibration and Packing Density measurements [76].  There are important 

preparation processes, where no data is collected, that must be performed prior the 

experiments in order to prevent leaks, contamination, damage, etc.: 

(1) Purge Gas Lines – when a new gas or bottle has been connected. 

(2) Purge System & Samples – when a connection with a possible contaminant gas has 

been made. 

(3) Leak Check – for every experiment. 
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As a general basic PCT operation, the reactor with the sample is connected and a 

leak check is performed using Helium (99.9999% pure).  Afterwards, the reactor volume 

is calibrated at constant temperature and to a set measured pressure.  Hydrogen 

absorption is calculated by measuring the pressure difference.  Arrhenius plots can be 

obtain using the kinetic feature option by increasing the temperature in intervals to obtain 

Log (sorption rate) vs. 1000/temperature.  In addition, van’t Hoff plot represents the 

thermodynamic equilibrium of the gas sorption process.  The PCT feature is used to 

obtain the van’t Hoff measurements.  The enthalpy of formation, which is represented by 

the slope in the van’t Hoff plot, can be calculated by the van’t Hoff equation: 

R
S

TR
HPeq

Δ
−⎟

⎠
⎞

⎜
⎝
⎛Δ

=
1)ln(  (14) 

 

The temperature is held constant while gas (pressure) is applied to the sample in 

aliquots, for each aliquot the system is allowed to reach equilibrium.  The process can be 

repeated until desired or until operational limits allows.  If hydrogen is absorbed or 

desorbed by the sample, a plateau forms (see Figure 3.17) indicating hydrogen-sample 

interaction at that specific temperature and pressure.  A picture of the model and monitor 

indicator can be observed in Figure 3.18 and 3.19.  
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Figure 3.17:  PCT Diagram (Left) Associated with the Van’t Hoff Plot (Right) [76]. 

 

 

Figure 3.18:  PCTPro-2000 Hydrogen Sorption Apparatus Picture. 
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Figure 3.19:  PCTPro-2000 Manifold Monitor Indicator. 

 

3.4.6 Fourier Transform Infrared Spectrometer (FT-IR) 

Fourier Transform Infrared (FT-IR) spectroscopy is an analytical technique used 

to measure infrared intensity against wavelength of light.  However, multiple regions are 

found in the infrared portion of the electromagnetic spectrum which is divided into three; 

the near- (14000-4000 cm-1), mid- (approx. 4000-400 cm-1) and far- infrared (approx. 

400-10 cm-1) named for their relation to the visible spectrum.  The Infrared spectroscopy 

is useful because chemical bonds interact with the matter by stretching, contracting and 

bending the chemical bonds at different energy levels.  The far-infrared, has low energy 

and could be used for studies of rotational spectroscopy, the mid- infrared for associated 

rotational-vibrational structure and near- infrared for harmonic vibrations.     

In order to measure a sample, a beam of infrared light is passed through an 

interferometer creating constructive and destructive patterns of light beams which are 

then passed through the sample.  By absorbing an amount of energy at each wavelength, 

a spectrum is created and recorded.  From this transmittance or absorbance spectrum may 
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be plotted showing at which wavelengths the sample absorbs the IR and as consequence, 

the chemicals bonds present. 

A Fourier transform spectrometer is a Michelson interferometer with a movable 

mirror.  In its simplest form, a Fourier transform spectrometer might look like Figure 

3.20.  

 

 

Figure 3.20:  Basic Diagram for an FT-IR Spectrometer [77]. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Undoped and Doped LiBH4 + ZnCl2 

Figures 4.1 and 4.2 show the different thermal and weight loss profiles for 

undoped and doped (with MgH2, TiF3 and nanoNi) 2LiBH4 + ZnCl2, including an 

undoped 10 minutes hand mixed sample.  The mixture of LiBH4 / ZnCl2 in a ratio of 2:1, 

was prepared by ball milling under hydrogen pressure.  As a clarifying point to the 

reader, all LiBH4 / ZnCl2 mixtures, with the exception of the 10 minute hand mixed 

sample, were ball milled for 20 minutes.  The profiles indicates the presence of a 

complex metal hydride, probably Zn(BH4)2 [67].  Zinc borohydride Zn(BH4)2 has a 

theoretical hydrogen capacity of 8.5wt% and decomposition temperature around 1000C.  

It could be formed by ball milled mixture of 2LiBH4 + ZnCl2 however, further 

characterization is needed. 

Comparing both profiles in Figures 4.1 and 4.2, the samples of 2LiBH4 + ZnCl2 

doped with nanoNickel (QuantumSphere) showed better kinetics and thermodynamic 

effects at lower temperatures when compared to the undoped sample.  The catalytic 

effectiveness of the mixture doped with 3mol% nanoNickel surpasses the other doped 

and undoped mixtures by reducing the desorption temperature from 1140C to 100oC.  The 

measured weight loss for most mixtures, except the hand mixed sample, is much higher 
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than the expected 8.5wt%, indicating a probable decomposition of additional compounds 

besides of hydrogen.  Gas analyses should be performed to determine gas composition.  

No significant effects were observed for TiF3 and MgH2 doped samples. 

A hand mixed sample was prepared using a ceramic mortar and stirring for 10 

minutes; the SDT-TGA plot shows a weight loss of at least 9.0wt% at around 1250C.  The 

small weight loss compared to other graphs might be due to an incomplete reaction of 

2LiBH4 + ZnCl2.  The SDT-DSC diagram indicates the presence of two endothermic 

peaks with onset at around 1120C and 1370C which could be associated with the 

remaining LiBH4 structural transition and decomposition of Zn(BH4)2, corroborating the 

incompleteness of the hand milled reaction.  Table 4.1 represents the SDT-TGA analysis 

results for the undoped and doped 2LiBH4 + ZnCl2. 
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Table 4.1:  Thermogravimetric Analysis of Undoped and Doped 2LiBH4 + ZnCl2. 

Sample Name 
On-set Temperature 

(ºC) 

Peak Temperature 

(ºC) 

Total weight loss 

(%) 

2LiBH4 + ZnCl2 114.07 125.06 14.80 

2LiBH4 + ZnCl2 + 

1mol% TiF3 
114.13 129.21 14.92 

2LiBH4 + ZnCl2 + 

2mol% TiF3 
112.57 128.00 14.18 

2LiBH4 + ZnCl2 + 

2mol% MgH2 
113.96 128.11 13.70 

2LiBH4 + ZnCl2 

Handmilled 
138.69 150.50 9.435 

2LiBH4 + ZnCl2 + 

2mol% nanoNi 
110.38 113.00 14.73 

2LiBH4 + ZnCl2 + 

1mol% nanoNi 
114.38 116.90 13.54 

2LiBH4 + ZnCl2 + 

3mol% nanoNi 
106.05 107.30 14.82 

2LiBH4 + ZnCl2 + 

4mol% nanoNi 
106.65 109.31 12.67 
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Figure 4.3 shows the XRD profiles for most SDT analyzed mixtures.  The peaks 

locations were obtained and matched with: LiBH4 [38-40, 46], MgH2 [65, 78-81], LiCl 

[46, 82], thin foil (refer to Figure 4.4) and ZnCl2 (refer to Figure 4.5 and PANalytical 

X’pert Highscore software version 1.0e reference code 00-016-0850).   
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Figure 4.4:  XRD Profile for the Polyethylene Clear Plastic Wrap (Thin Foil) Used to 
Protect the Samples. 

 
It can be corroborated the incomplete reaction for the 10 minute hand mixed 

sample with the peaks of the reactants present in the mixture.  While comparing the hand 

mixed and ball milled samples analyses, two unknown peaks at around 200 and 20.50 

indicate a possible relationship in the formation of Zn(BH4)2 in addition to the LiCl peaks 

observed indicating a LiBH4 reaction with ZnCl2, however further characterization is 

needed (see also section 4.3, 2LiBH4 + MgH2 + Xmol% ZnCl2 for comparison).  The 
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presence of LiCl affects the total hydrogen capacity of the mixture by adding a dead 

weight which is measured by the SDT.  No peaks for TiF3, MgH2 and Ni were observed 

possibly due to their low concentration. 

 

Figure 4.5:  XRD Profile of Pure ZnCl2. 

 

 

 

 

 

 

 

 

XRD profile of ZnCl 2

20 25 30 35 40 45 50 55 60 65 70
2?, degrees

Intensity (counts) 

Thin Foil = TF 

TF 

TF 

(101)

(102)

(103)

(112)

(114)

(105)

(006)

(202)
(211)(106) 

(212) (213) 
(116) (107)



www.manaraa.com

 

45 

4.2 MgH2 + nanoNi 

 As part of our investigation, several MgH2 + nanoX [X=Ni (QuantumSphere) or 

Zn] mixtures were prepared to study the effects of different nano-metal and dopants for 

the following mixtures:  

(1) 2LiBH4 + (MgH2BM9hrs + 10mol% nanoNi + BM2hr) + BM1hr. 

(2) 2LiBH4 + MgH2 + BM1hr. 

(3) MgH2 + 10mol% nanoNi + BM2hrs. 

(4) MgH2BM12hrs. 

(5) MgH2BM9hr + 10mol% nanoZn + BM2hr. 

(6) (2LiBH4 + MgH2BM12hr + BM1hr) + 10mol% nanoNi + BM1hr. 

(7) MgH2 BM9hrs. 

(8) MgH2BM12hr + 5mol% nanoNi + BM1hr.   

In Figure 4.6 and 4.9, portions of MgH2 were ball milled before mixing to lower 

the desorption temperature and study if further improvements could be achieved by 

catalytic doping.  Previous studies [51, 78, 83, 84] have shown that ball milling reduces 

MgH2 desorption temperature.  The undoped MgH2 the sample ball milled for 12 hrs 

showed a slight reduction in the decomposition temperature at around 325oC when 

contrasted with the MgH2 sample ball milled 9 hrs, both results show lower desorption 

temperatures than the as-received MgH2 around 4280C [85].   
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In Figure 4.7 and Figure 4.9, the profiles for mixtures (3), (5) and (8) indicate that 

samples doped with nanoNi showed a higher effectiveness in reducing the desorption 

temperature starting at around 225oC when compared with samples doped with nanoZn.  

The weight loss for doped and undoped MgH2 samples fluctuated at around 4wt% and 

5wt% respectively.   

On the other hand, in Figure 4.8 and 4.9, the sample profiles for (1), (2) and (6) 

show desorption temperatures around 275oC, 350oC and 270oC, respectively.  As 

observed, 2LiBH4 + MgH2 samples doped with nanoNickel exhibits lower 

dehydrogenation temperatures compared to the undoped counterpart.  In addition, total 

weight losses for the sample profiles (1), (2) and (6) were observed around 3.50wt%, 

3.20wt% and 4.66wt%, respectively. The addition of nanoNi influenced the desorption 

temperatures of MgH2 by reducing it.  Further studies which involve doping LiBH4 with 

nanoNickel will be carried out. 
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4.3 LiBH4 + ½MgH2 + Xmol% (ZnCl2 or TiCl3) 

Figure 4.10 shows different SDT-TGA results for the pristine 95% LiBH4 and 

mixtures of LiBH4 + ½MgH2 + Xmol% ZnCl2 (X = 2,4,6,8,10) ball milled for 2 hours 

under H2 pressure.  A slight weight loss of around 1.2% during the melting process of 

non-ball milled LiBH4 between the peaks 275-300oC was observed.  A significant 

exothermic peak around 75oC with weight loss since the beginning of the analysis [86] 

indicates a possible hydrolysis [33, 35] of LiBH4 due to moisture.  A total weight loss 

around 13.6wt% was observed for commercial undoped LiBH4. 

In addition, a slight shift in the melting peak from approximately 283oC to 270oC 

was observed when contrasting DSC profiles (refer to Figure 4.11) to the non-ball milled 

LiBH4.  This effect could be more associated with the concentration of ZnCl2 than with 

the ball milling time and/or the addition of MgH2. 
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According to Figure 4.12, the desorption rate of LiBH4 + ½MgH2 + 2mol% 

ZnCl2 ball milled for 2 hours increases with increasing temperature.  Desorption rate at 

350oC is around 5 times faster than the desorption rate at 300oC.  The dramatic desorption 

difference when comparing the plots for 350oC and 300oC indicates a possible range to 

locate the significant desorption process, however these high temperatures are not within 

the DOE FreedomCAR technical targets.  An additional observation, assuming the 

reaction products are: LiH + ½MgB2 + 2H2, the H2 total weight percent in the product 

mixture will decrease with increasing concentration of ZnCl2. 

Assuming the later product mixture, for the following ZnCl2 concentrations an 

approximate theoretical total H2 weight percentage would be obtained (refer to table 4.2).  

These weight percentages include the weight of ZnCl2 since it is not eliminated from the 

mixture.  Additional analysis must be performed to the reaction products to determine gas 

composition.   

Table 4.2:  Reduction Effect in the Theoretical Total H2 wt% by ZnCl2 Addition. 

Mol% ZnCl2 Total H2 wt% 

2 10.34 

4 9.359 

6 8.549 

8 7.867 

10 7.286 

 



www.manaraa.com

 

55 
 Fi

gu
re

 4
.1

2:
  D

es
or

pt
io

n 
D

at
a 

C
ol

le
ct

ed
 o

n 
a 

PC
T 

fo
r L

iB
H

4 
+ 

½
M

gH
2 
+ 

2m
ol

%
 Z

nC
l 2 

B
al

l M
ill

ed
 2

 H
ou

rs
 U

nd
er

 H
2 A

m
bi

en
t. 

 
D

es
or

pt
io

ns
 w

er
e 

Pe
rf

or
m

ed
 a

t V
ar

io
us

 T
em

pe
ra

tu
re

s:
 1

-3
 C

yc
le

s a
t 2

50
o C

; 4
-6

 C
yc

le
s a

t 3
00

o C
; 8

-1
0 

C
yc

le
s a

t 3
50

o C
. 



www.manaraa.com

 

56 

The PCT diagram (Figure 4.13), shows two different desorption curves at 250oC 

and 350oC for LiBH4 + ½MgH2 + 2mol% ZnCl2 ball milled 2 hours under H2 pressure.  

There is no appearance of plateau pressure region for the 1st desorption cycle curve at 

250oC which is an indication of no hydrogen being absorbed by the mixture at that 

temperature.  As for the 11th desorption cycle curve at 350oC, a plateau pressure at around 

4-5 bars was observed with a total desorption of 1.4 wt.%.  It was proven the MgH2 

effects in reducing the reaction enthalpy by 25 kJ/(mol H2) by destabilizing LiBH4 [46].   

The XRD profiles shown in Figure 4.14 correspond to the mixture of LiBH4 + 

½MgH2 + Xmol% ZnCl2 ball milled under an ambient of H2 gas for 30 minutes.  The 

presence of LiCl and Zn [87] after ball milling for 30 minutes indicates a reaction 

between ZnCl2 and LiBH4 taking place while the mixture is being pulverized.  As stated 

before in section 4.1, the presence of LiCl affects the overall hydrogen weight loss by 

adding its dead-weight to the mixture, unless it is removed by purification.  In addition, 

the peak corresponding to LiCl increases with increasing concentration of ZnCl2 while at 

the same time the relative intensities of peaks corresponding to MgH2 and LiBH4 

decreases.  No presence of MgB2 was found. 
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The XRD profiles shown on Figure 4.15 correspond to the mixture of LiBH4 + 

½MgH2 + Xmol% TiCl3 ball milled under an ambient of H2 gas for 30 minutes.  The 

presence of LiCl after ball milling for 30 minutes indicates a reaction between TiCl3 and 

LiBH4, possible reaction products could be Ti(BH4)3 [88] and/or Ti(BH4)4 (see reference 

in [18]), however further analyses are needed.  Besides, the peak corresponding to LiCl 

increases with increasing concentration of TiCl3 while at the same time the peaks 

corresponding to MgH2 and LiBH4 decreases and no presence of MgB2 was found.   

The FT-IR profiles in Figures 4.16 and 4.17 indicate the B-H stretching for LiBH4 

at around 2276 and 2213 cm-1 in addition the deformation bands for BH2 observed at 

1118 and 1091 cm-1 [89, 90].  There were no other significant peaks that could indicate 

the presence of additional mixing materials or formation of new compounds. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion and Recommendations 

In summary, the undoped ball milled mixture of LiBH4 / ZnCl2 successfully 

reduced the desorption temperature close to 100oC.  Doping with nano Nickel 

demonstrated to further decrease the dehydrogenation temperature.  In addition, it was 

found that LiBH4 + ZnCl2 + 3mol% nanoNi is the optimum mixture for maximum 

performance.  The XRD profiles show LiCl peaks indicating a reaction between LiBH4 

and ZnCl2.  The weight losses were higher than 10wt%, if assumed that Zn(BH4)2 is 

formed during LiBH4 / ZnCl2 ball milling, then, the probabilities of additional 

compounds being released other than hydrogen are high.  It is recommended, for this 

system, to investigate if there is the presence of Zn(BH4)2 and to determine gas 

composition during desorption. 

The ball milling process has shown to reduce the desorption temperature of 

MgH2.  The addition of nanoNickel to MgH2 has further reduced the dehydrogenation 

temperature.  If adding nanoNickel to the LiBH4 / MgH2 mixture, the system destabilizes 

which is indicated by a decrease in the decomposition temperature.  However, it is 

recommended to perform gas composition and thermal equilibrium studies to understand 

the system.   



www.manaraa.com

 

64 

The mixture of LiBH4 / MgH2 was successfully prepared by doping with different 

amounts of ZnCl2 and TiCl3 catalysts.  DSC and TGA analysis shows a lower 

decomposition/melting temperature of LiBH4/MgH2 mixture in the presence of ZnCl2.  

The initial rate of hydrogen decomposition from LiBH4 + ½MgH2 + 2mol% ZnCl2 

increases with an increase in temperature.  Moreover, the plateau pressure of 4-5 bars at 

350oC indicates a lower energy level for dehydrogenation-rehydrogenation cycling with a 

volumetric capacity of 3.0wt%, such capacity increases with cycling.  The XRD profiles 

indicate a reaction occurring during the mechano-chemical mixing with ZnCl2 and TiCl3 

showing the presence of LiCl as product.   

It is recommended to focus the investigation in identifying the possible materials 

formed besides of LiCl during ball milling and gas composition during desorption 

process.  Identifying the gas composition during desorption might provide useful 

information regarding the reaction path and products.  Further experimental analysis 

using pressure-composition-isotherms should also be highly considered to identify 

reversibility. 
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